
Automation, Control and Intelligent Systems 

2024, Vol. 12, No. 2, pp. 35-47 

https://doi.org/10.11648/j.acis.20241202.12  

 

 

*Corresponding author:   

Received: 5 July 2024; Accepted: 26 July 2024; Published: 15 August 2024 

 

Copyright: © The Author(s), 2024. Published by Science Publishing Group. This is an Open Access article, distributed 

under the terms of the Creative Commons Attribution 4.0 License (http://creativecommons.org/licenses/by/4.0/), which 

permits unrestricted use, distribution and reproduction in any medium, provided the original work is properly cited. 
 

 

Research Article 

UAV Visual Tracking with Enhanced Feature Information 

Shuduo Zhao
1, * 

, Yunsheng Chen
2
, Shuaidong Yang

1 
 

1
School of Electric and Information, Southwest Petroleum University, Chengdu, China 

2
School of Automation, Chongqing University, Chongqing, China 

 

Abstract 

Unmanned aerial vehicles (UAVs) visual tracking is an important research direction. The tracking object is lost due to the 

problems of target occlusion, illumination variation, flight vibration and so on. Therefore, based on a Siamese network, this study 

proposes a UAVs visual tracker named SiamDFT++ to enhance the correlation of depth features. First, the network width of the 

three-layer convolution after the full convolution neural network is doubled, and the appearance information of the target is fully 

utilized to complete the feature extraction of the template frame and the detection frame. Then, the attention information fusion 

module and feature deep convolution module are proposed in the template branch and the detection branch, respectively. The 

feature correlation calculation methods of the two depths can effectively suppress the background information, enhance the 

correlation between pixel pairs, and efficiently complete the tasks of classification and regression. Furthermore, this study makes 

full use of shallow features to enhance the extraction of object features. Finally, this study uses the methods of deep 

cross-correlation operation and complete intersection over union to complete the matching and location tasks. The experimental 

results show that the tracker has strong robustness in UAVs short-term tracking scenes and long-term tracking scenes. 
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1. Introduction 

Owing to the strong flexibility and high safety performance 

of UAVs, the construction of UAVs air platforms has been 

continuously improved in recent years, and has been widely 

used in autopilot, human-computer interaction, target fol-

lowing and so on. UAVs visual tracking principally focuses 

on the target position in the first video frame, and then locates 

and predicts the target in the subsequent video frames. At 

present, the mainstream UAVs visual tracking algorithms are 

principally divided into three categories: 1) Classical tracking 

algorithms, such as optical flow and Kalman filter. 2) Corre-

lation filter tracking algorithm, such as kernel correlation 

filters [2], staple [3]. 3) Deep learning tracking algorithms, 

such as fully convolutional siamese networks for object 

tracking [4] (SiamFC) and learning to track at 100 FPS with 

deep region networks [1]. 

UAVs visual tracking is a challenging task. Visual tracking 

based on an air platform will encounter many challenges, such 

as aspect ratio change, partial/full occlusion, low resolution, 

similar object and camera jitter. Before the development of 

deep learning, UAVs visual trackers mainly rely on manual 

features to extract the features of targets, such as HOG, CN 

and GRAY. Because of its high efficiency in the frequency 
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domain, the correlation filtering framework for visual track-

ing uses the cyclic matrix to generate negative sample in-

formation, so that the tracker can learn the context infor-

mation and locate the target accurately. Although these 

trackers [2, 5-7] have greatly improved the tracking perfor-

mance compared with traditional algorithms, due to the 

complexity of UAVs tracking scenes, these trackers still have 

poor robustness. 

The UAVs visual tracker based on deep learning primarily 

uses the backbone network for feature extraction, including 

AlexNet, VGGNet, ResNet, etc., which effectively improves 

the tracking performance. SiamFC extracts features and 

completes similarity matching through a full convolution 

neural network to obtain the feature map of the target location, 

which effectively improves the robustness of the tracker. 

Object tracking algorithms based on deep learning have 

gradually become mainstream, including high performance 

visual tracking with siamese region proposal network [8] 

(SiamRPN), unsupervised deep tracking [9] (UDT), target 

aware deep tracking [10] (TADT) and so on. In the process of 

UAVs visual tracking, feature extraction through lightweight 

convolutional neural network (such as AlexNet) still contains 

considerable background information, which seriously affects 

the tracking performance of the tracker. The use of deeper 

networks will lead to the destruction of translation invariance 

in the convolution process [11], and the tracking speed cannot 

achieve real-time performance. The purpose of using ex-

panded convolution [12, 13] is to expand the receptive field 

and avoid the resolution of degradation caused by the pooling 

layer, but this method still suffers from performance instabil-

ity when dealing with small targets. The UAVs tracker based 

on deep learning [14-17] still has some limitations and cannot 

achieve a good balance between accuracy and speed. In ad-

dition, although many trackers can utilize deep neural net-

works to extract the information of target features, they seri-

ously affect the real-time performance of the tracking process. 

The use of a lightweight network can effectively improve the 

tracking speed, but the lack of access to the information of the 

deep characteristics of the target leads to poor context rele-

vance of the model. Therefore, many trackers do not fully 

consider the impact of the model itself on the tracking per-

formance, resulting in low tracking accuracy. However, the 

tracker designed not only uses a lightweight network to 

complete the model training, but also enhances the relevance 

of the model to the pixel pair of the template frame and de-

tection frame, and improves the ability of target positioning. 

Although SiamRPN has achieved a remarkable tracking 

effect by introducing regression calculations, there are many 

instabilities in flight tracking in UAVs scenes, such as occlu-

sion, background clutter, illumination variation and so on. 

Therefore, this study proposes the UAVs visual tracker Si-

amDFT++ (deep feature enhancement tracking of the Siamese 

network). AlexNet is used to complete the target feature ex-

traction. The difference here is that the number of channels is 

doubled in the latter three-layer convolution to reinforce the 

appearance features related to the target. This study intro-

duces CycleMLP [18] to focus on shallow object features with 

rich information. Meanwhile, this study uses the methods of 

deep cross correlation [11] operation and complete intersec-

tion over union [19] (CIOU) to complete the matching and 

location tasks. The main contributions of this work are as 

follows: 

Because the target information is fixed in the process of 

UAVs tracking, an attention information fusion module 

(AIFM) is designed for the extraction of target features in the 

template frame. It is used to adaptively learn the target ap-

pearance features of the template frame, to improve the 

weight proportion of the target spatial position and channel 

information in the network. Due to the continuous change in 

detection frame information, it is worth considering how to 

dynamically strengthen the extraction of target feature in-

formation in the changing detection frame after extracting 

features from the backbone network. Therefore, a feature deep 

convolution module (FDCM) is proposed in this paper. It is 

used to learn the changing feature information, enhance the 

search and extraction ability of target information, and com-

plete the final classification and regression task. 

This study evaluates the SiamDFT++ on three authoritative 

aerial benchmarks. Through quantitative and qualitative 

analysis, the performance of the tracker is better than many 

state-of-the-art (SOTA) trackers. 

The actual test on a typical air platform proves the superior 

efficiency and effectiveness of SiamDFT++ in real-world 

scenarios. 

2. Related Work 

Over the past few years, many target trackers have 

demonstrated good performance on any aircraft. Although 

learning the continuous convolution operator [15] (CCOT) of 

visual tracking uses vggnet to extract features and learns the 

discriminant convolution operator in continuous space, it 

basically completes feature extraction through image convo-

lution. ECO [16] utilizes channel compression and model 

updating strategies to improve the robustness of the tracker. 

Although these trackers [10, 20-23] have achieved some im-

provements by using multi-feature fusion and subsequent 

fusion strategies to perform feature extraction, the ability of 

using global feature information for trackers still needs to be 

enhanced. Their robustness in executing UAVs visual track-

ing tasks is poor, and the ability of applying global infor-

mation for these trackers still needs to be enhanced. 

Siamese-based methods [4, 8, 10, 17] have obtained ex-

cellent tracking performance. SiamFC achieves faster track-

ing speed and higher accuracy. SiamRPN [8] adds a regres-

sion branch with fine-tuned bounding boxes to improve the 

tracking performance. SiamCorners [17] used the corner pool 

module to predict target corner points, and then conducted 

multi-level feature fusion to further predict multiple corner 

points after mutual attention, achieving good tracking per-
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formance. However, these trackers [4, 8, 10, 18, 24, 25] use 

only deep networks (e.g., ResNet and VGGNet) to accom-

plish feature extraction before calculating the correlation and 

do not sufficiently consider whether the features extracted 

from the current image can adequately characterize the ex-

tracted target feature information. At the same time, the use of 

deeper network seriously affects the real-time tracking for 

UAVs. Therefore, this study designed AIFM and FDCM to 

alleviate the above problems. 

3. UAV Visual Tracking Algorithm 

3.1. Overall Framework of the Algorithm 

In recent years, UAVs visual tracking has been broadly 

applied in both military and civilian applications. Aerial ve-

hicles are deployed with visual sensors to perform visual 

tracking tasks. An increasing number of researchers are 

working on small UAVs and applying them to diverse fields. 

However, due to the complex background of UAVs tracking 

process, there are multiple challenges. The development of an 

efficient and robust visual tracking method is fundamental for 

the future of UAVs remote sensing applications. 

The tracker designed can conduct end-to-end learning. The 

baseline tracker [8] also does not make full use of the target’s 

shallow feature information. The baseline tracker uses the 

backbone network to extract features, and then uses the 

cross-correlation operation to complete the similarity calcu-

lation of the two images. Through experiments, it is found that 

only the features proposed by the backbone network affect the 

tracking performance. Therefore, when out of view, similar 

objects and illumination changes are encountered, the tracker 

is vulnerable to interference. Therefore, after the backbone 

network, it is particularly important to improve the correlation 

of remote pixel pairs and the enhancement of target feature 

information. Therefore, UAVs are easily disturbed by occlu-

sion, similar objects and illumination changes. It is particu-

larly important to improve the correlation between the tem-

plate frame and detection frame and highlight the target fea-

tures. As shown in Figure 1, this study uses a red dotted box to 

indicate that it has the same structure as the baseline tracker 

but different parameters. In the template frame and detection 

frame, input images are cut and filled to sizes of 127×127×3 

and 303×303×3 respectively. Then, the tensor sizes obtained 

by the feature extraction networks are 6×6×512 and 

28×28×512 respectively. The backbone network parameters 

are shown in Table 1. Then, they are fed into the AIFM and 

FDCM designed in this paper respectively, and the associa-

tion between the adaptive learning template frame target and 

detection frame target is carried out. After 3×3 convolutions, a 

deep cross-correlation calculation is carried out. There are two 

kinds of task heads in the network, which are mainly used to 

complete the classification of the target and background and 

the regression task of bounding boxes. Finally, the bounding 

box with the highest response score is selected as the tracking 

result through non-maximum suppression (NMS). 

 
Figure 1. UAV tracker network structure is designed in this paper. 
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Table 1. Backbone network parameters. 

layers stride kernel channel template detection 

Input - - - 127×127 303×303 

Conv1 2 11×11 96 59×59 147×147 

MaxPool1 2 3×3 96 29×29 73×73 

Conv2 1 5×5 256 25×25 69×69 

MaxPool2 2 3×3 256 12×12 34×34 

Conv3 1 3×3 768 10×10 32×32 

Conv4 1 3×3 768 8×8 30×30 

Conv5 1 3×3 512 6×6 28×28 

 

3.2. Template Frame Feature Extraction 

The attention information fusion module (AIFM) can au-

tomatically increase the weight of target-related information 

in spatial and channel dimensions by extending the perceptual 

field in convolutional neural networks and fusing features at 

different levels to effectively build a feature cascade of re-

mote pixel pairs. Two one-dimensional kernels are used to 

build local context models in the vertical and horizontal di-

rections respectively to capture the target location information. 

Then, the local cross-channel interaction strategy is adopted 

to consider the correlation between each channel and the 

adjacent K channels. Numerous experimental results show 

that reducing the dimensionality in the template frame has 

side effects on the prediction results of tracking. 

The AIFM averages and slides the eigenvalues of each row 

and each column along the vertical and horizontal directions 

of the window, to capture more abundant spatial semantic 

information and effectively suppress the background infor-

mation. The size of the pooling window is set to (1, W) and (H, 

1). The input tensor is 
H Wa R  . Vertical and horizontal 

directions can be calculated as: 

,

0

1
,h h H

i i j

j W

y a y R
W

 

            (1) 

,

0

1
,v v V

i i j

j W

y a y R
H

 

            (2) 

The input tensor of AIFM is 
C H Wx R   , C represents 

the number of channels, and H  and W  represent the height 

and width, respectively. Then, one-dimensional convolution 

with kernel 3 is used to modulate the feature information of 

the adjacent position and the current position to obtain the 

spatial information of the remote global context. 
h C Hy R   

and 
v C Wy R   can be gained respectively. By fusing 

hy  

and 
vy , 

C H Wy R    can be gained. The mathematical ex-

pression is: 

, , , ,( , )h v
c i j c i c jy Add y y               (3) 

where (.,.)Add  denotes element-wise sum among feature 

maps. Next, C H Wz R   can be gained, and the mathematical 

expression is as follows: 

( , ( ( )))z Scale x f y               (4) 

f describes 1×1 convolution, (.,.)Scale  describes ele-

mentwise mutiplication.  describes the sigmoid function. 

The pooling window sizes are given as 16×16 and 12×12 

respectively, and batch normalization (BN) and ReLU opera-

tions are performed after each layer of convolution to further 

boost the feature extraction capability. Channel C  can be 

expressed as: 

1 2 3 512[ , , , , ]C C C C C             (5) 

Next, the obtained z  is further processed using global 

maximum pooling (GMP) and global average pooling (GAP) 

to obtain rich context information. In this tracker, the band 

matrix kW  is used to express the learned channel weight 

information, so that the number of cross-channel interactions 

can be implemented. kW  can be formulated as: 
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In this tracker, only the k  weight information adjacent to 

iz  is considered, which can be formulated as: 

1

,

k
j j j k

i i i i

j

w w z z


 
  
 
 
             (7) 

where 
k
i denotes the complete set of k  channels adjoining 

to iz , and 
jw  indicates the shared weight information. 

Then, the strategy can be realized by fast one-dimensional 

convolution (represented as 1C D ) with convolution kernel 

size of k . Mathematical, it can be expressed as: 

( 1 ( ))kw C D z                  (8) 

Then, this study can obtain gmpw  and gapw  respectively. 

Mathematical, they can be expressed as: 

  1gmp kw C D z            (9) 

  1gap kw C D z           (10) 

Since the number of channels in a network is usually a 

multiple of 2, there is a linear mapping between C and k, and 

the mathematical expression of  is: 

 
 2log 1

2 2
odd

C
k C               (11) 

where 
odd

p  denotes the nearest odd number closest to p , 

and then 
C H W

gmpz R    and 
C H W

gapz R    are obtained, 

which can be expressed as: 

( , )gmp gmpz Scale w z            (12) 

( , )gap gapz Scale w z            (13) 

C H Wr R    is obtained after feature fusion, i.e.: 

( , )gmp gapr Add z z            (14) 

After obtaining r , the features are further processed by 

BN and ReLU. Then, one-dimensional convolution and mul-

tilayer fusion are performed. 

Next, this study introduces CycleMLP to make full use of 

the shallow feature information and capture more feature 

information. The input tensors are 1 1 1
1

C H W
x R

 
  and 

2 2 2
2

C H W
x R

 
 , which represent the feature maps of the third 

and fourth layers of the backbone network respectively. Then, 

after GAP calculation, this study concatenates the feature 

information, and obtain the prediction result through a mul-

tilayer perceptron (MLP). After reshaping, elementwise 

mutiplication is employed to strengthen the aggregation of 

shallow feature information. Thus, 
C H Wl R    is obtained, 

i.e.: 

   1 2 1, ( ), ( )
S

l Scale x MLP cat AvgPool x AvgPool x
 

  
 

 (15) 

where s denotes reshape and cat denotes concat. AvgPool

denotes GAP calculation. MLP represents two fully con-

nected layers with BN and ReLU in each layer. After Cy-

cleMLP, two layers of convolution with a convolution kernel 

size of 3 are used to complete the calculation of deep features. 

Again with the deep feature fusion, highlighting the target 

information, the obtained 
C H Wg R    mathematical for-

mula can be expressed as: 

     2 1
Re Re ,G Gg Scale W LU LN W LU LN l r

     
  

 (16) 

where LN represents the batch normalization, and 
1GW  and 

2GW  denote the weight parameters learned by the two layers 

of convolution, respectively. Finally, the learned weight 

vector can be obtained, and the final channel C  can be ex-

pressed as: 

1 2 2563[ , , , , ]C C C C C C            (17) 

3.3. Detection Frame Feature Extraction 

Because the detection frame image is constantly changing, 

it is particularly important to enhance the feature extraction 

ability of the detection frame dynamic image target infor-

mation. If the correlation between the extracted feature in-

formation and target information is small, the performance of 

the tracker will be seriously affected. This study design a 

feature deep convolution module (FDCM) that can adaptively 

learn and weight the target feature information in the detec-

tion frame, to improve the target positioning ability of the 

tracker. 
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The input tensor is 
C H Wx R   , where C  represents the 

number of channels and H  and W  represent the height and 

width, respectively. First, after convolution with a kernel size 

of 1×1, the feature information is processed by batch nor-

malization and an activation function. A large number of 

experiments show that too many detection frame channels 

will carry a large amount of feature information irrelevant to 

the target. Therefore, compressing the number of channels is 

an effective method to learn target features, and also reduces 

the number of parameters. In the experiment, r  is the com-

pression channel ratio, and the size is 8. Then the obtained 

feature information is reshaped to obtain   /, C r NB D R   

where N  represents H W , i.e.: 

  1Re VB LU LN W x           (18) 

  1Re VD LU LN W x           (19) 

LN  represents the batch normalization operation, and 

1VW  represents the weight information learned by deep 

convolution. B  and D  learn the feature information of the 

target through GAP and GMP respectively, and complete the 

matrix multiplication operation. After taking the maximum 

value of the obtained output feature and completing the re-

shaping, the normalized probability distribution of the target 

feature is obtained through the softmax function, which can 

adaptively learn the spatial position information of the target 

and output 
C H Wy R    can be expressed as:  

    max max ax
 

  
 

S
T

y soft M Pool B AvgPool D  (20) 

where, T represents transpose and s  represents reshape. 

Then, this study extend the channel through convolution and 

allocate various weight information to learn the relevant fea-

tures of the target, to realize the information fusion of the 

features and attain the final output Z , i.e.: 

   2Re ,VZ LU LN Add W y x      (21) 

Where 2VW  represents the model weight learned by ex-

tended channel convolution. 

4. Experiments 

4.1. Experimental Environment and Datasets 

The UAV tracking algorithm in this paper is based on 

PyTorch1.4 in the Linux system. The sole GPU is GTX 

2060Super 8G, and the CPU is Intel Core i7-9700F @ 

3.00GHz. 

The ILSVRC2017_VID dataset and Youtube-BB dataset 

are employed for model training, including 45800 video se-

quences with real labels, containing more than one million 

frames. The algorithm is tested on UAV123 [26] dataset and 

UAV20L [26] dataset. The UAV123 dataset contains 123 

video sequences with 12 attribute variations, including scale 

variation, aspect ratio change, low resolution, fast motion, full 

occlusion, partial occlusion, out-of-view, background clutter, 

illumination variation, viewpoint change, camera motion, and 

similar object. It is also the largest UAVs tracking dataset at 

present. The UAV20L dataset contains 20 video sequences 

with 12 attribute variations and is a subset of the UAV123 

dataset. It is primarily utilized to evaluate the UAVs 

long-term tracking problems. DTB70 contains 70 video se-

quences with 11 attribute variations, which is often accom-

panied by serious camera jitter during shooting. 

4.2. Evaluation Metrics 

The one-pass evaluation (OPE) metric is utilized to evalu-

ate the tracking performance of UAVs, including the success 

rate and precision. The success rate is the ratio of the number 

of bounding boxes to the number of real bounding boxes in 

the previous frame that are greater than a set threshold, and 

can be expressed as an area under the curve (AUC) success 

curve score. Here, intersection over union (IOU) is the most 

direct calculation indicator. The precision is evaluated by the 

center location error (CLE) between the bounding box and the 

real bounding box. The precision plot is drawn by the per-

centage of the bounding boxes whose CLE is less than the 

preset threshold in the total bounding boxes of the previous 

frame. In the experiment, the threshold value is defined as 20 

pixels. The distance precision rate (DP) is obtained from the 

value of the precision curve. There were 240000 iterations 

during the training. Stochastic gradient descent (SGD) is 

employed for the gradient update with momentum = 0.9. This 

study set the dynamic learning rate to be initialized to 3×10
−2 

and reduced it to 10
−5

. When the response value of the com-

plete intersection over union is greater than 0.6, the predicted 

bounding box is a positive sample, and less than 0.3 is re-

garded as a negative sample. 

4.3. Experimental Results 

1) Results on the UAV123 dataset: In this experiment, this 

study employ the SiamRPN [8] tracker as the baseline tracker, 

and 17 most advanced trackers are selected to prove the ef-

fectiveness of the proposed UAVs visual tracker SiamDFT++, 

including: HiFT [17], AutoTrack [20], SiamRPN [8], SiamFC 

[4], MCCT [21] (multi-cue correlation filters), MCPF [22] 

(multi-task correlation particle filter), ECO_HC [17], Deep-

STRCF [7], SRDCF [23] (learning spatially regularized cor-

relation filters), ARCF [28] (learning aberrance repressed 

correlation filters), UDT [9], BACF [6], Staple [3], TADT 
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[10], SAMF [14], and DSST [5] and KCF [2]. As shown in 

Table 2: 

Table 2. Quantification evaluation on UAV123. 

Trackers Venue DP AUC 

SAMF ECCV2014 0.593 0.396 

DSST BMVC2014 0.586 0.356 

KCF TPAMI2015 0.523 0.331 

SRDCF ICCV2015 0.676 0.463 

Staple CVPR2016 0.595 0.409 

SiamFC ECCV2016 0.696 0.480 

MCPF CVPR2017 0.718 0.473 

BACF ICCV2017 0.660 0.459 

Trackers Venue DP AUC 

ECO_HC CVPR2017 0.710 0.496 

DeepSTRCF CVPR2018 0.705 0.508 

MCCT CVPR2018 0.734 0.507 

SiamRPN CVPR2018 0.749 0.528 

TADT CVPR2019 0.727 0.520 

ARCF ICCV2019 0.671 0.468 

UDT CVPR2019 0.668 0.477 

AutoTrack CVPR2020 0.689 0.472 

HiFT ICCV2021 0.787 0.589 

SiamDFT++  0.811 0.592 

 

  
Figure 2. Full occlusion of similar target scenarios. 

Compared with the latest tracker, the tracker has achieved 

the distance precision rate (DP) of 81.1% and an AUC score 

of 59.2%, ranking first among all trackers. Compared with the 

latest HiFT using a transformer structure, the positioning 

accuracy of the target is improved by 3.1%. Compared with 

the benchmark tracker, the overall precision is improved by 

8.3%, and the success rate is improved by 12.12%. As shown 

in Figure 2. The tracker shows the effectiveness of the tracker 

under the target full occlusion attribute, and the DP and AUC 

are improved by 18.9% and 30.0%, respectively. 

As shown in Figure 3. Due to the large viewing angle range 

and the problem of similar targets often encountered in UAVs 

visual tracking, SiamDFT++ can also track targets effectively. 

The tracking accuracy and success rate are 77.9% and 55.9%, 

respectively, which effectively proves the robustness of the 

tracker in this paper. It can be seen that only using manual 

features (such as KCF, SAMF, ARCF) or lightweight models 

(such as SiamFC, SiamRPN, TADT) leads to poor robustness 

of the tracker. Even though HiFT uses the transformer struc-

ture to enhance the dependency between global information, 

the local information is poor, resulting in only 51.4% of the 

AUC of similar targets. 

In fact, SiamDFT++ shows a good tracking effect under 

various attributes, as shown in Table 3. Compared with tradi-

tional visual tracking, UAVs visual tracking produces strong 

camera jitter and is more vulnerable to illumination. There-

fore, the tracker considers the ability of target feature extrac-

tion by the template frame and detection frame at the same 

time, and establishes an appearance feature model that can 

adaptively learn the target. SiamDFT++ can effectively pre-

dict and locate targets and better adapt to UAVs visual 

tracking scenes. 
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Figure 3. Similar object of similar target scenarios. 

As shown in Figure 4, this study selected truck1, car18 and 

car6_2 scenarios to verify the robustness of the SiamDFT++ 

tracker. It can be seen from the truck1 scene that SiamDFT++ 

can still locate the target well when the tracker is affected by 

background interference, target occlusion, similar objects and 

illumination variation. From the car18 scene, it can be seen that 

the red car is moving rapidly, and the tracker proposed can still 

locate the target quickly and accurately. It can be seen from the 

car6_2 scene that the tracker can still accurately locate the target 

in the scene with multiple challenges when tracking the vehicle 

at high altitude, accompanied by camera jitter and partial occlu-

sion, as well as the scale variation and viewpoint change. 

Table 3. Comparisons of algorithms for camera motion and illumination variation. 

scence 

Camera Motion Illumination Variation 

DP AUC DP AUC 

SAMF 0.561 0.381 0.478 0.312 

DSST 0.520 0.322 0.524 0.307 

KCF 0.483 0.310 0.418 0.270 

SRDCF 0.627 0.439 0.600 0.395 

Staple 0.544 0.386 0.498 0.362 

SiamFC 0.684 0.482 0.603 0.391 

MCPF 0.700 0.463 0.659 0.424 

BACF 0.639 0.450 0.525 0.356 

ECO_HC 0.676 0.476 0.628 0.407 

DeepSTRCF 0.696 0.509 0.664 0.444 

MCCT 0.720 0.508 0.704 0.466 

SiamRPN 0.750 0.537 0.665 0.456 

TADT 0.723 0.518 0.669 0.462 

ARCF 0.647 0.455 0.595 0.392 

UDT 0.654 0.467 0.599 0.401 

AutoTrack 0.658 0.458 0.617 0.396 

HiFT 0.799 0.600 0.700 0.502 

SiamDFT++ 0.831 0.615 0.805 0.573 
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Figure 4. Real scenes tracking on UAV123 dataset. 

2) Results on the UAV20L dataset: The UAV20L dataset 

focuses on the UAVs long-time tracking problem. Therefore, 

in order to verify the effectiveness of the SiamDFT++ tracker, 

this study test the tracker on the UAV20L dataset and com-

pare it with 19 kinds of advanced trackers, including: Auto-

Track, DaSiamRPN (distractor-aware siamese networks), 

SiamRPN, DSiam (dynamic siamese network), SiamFC, 

MCCT, MCPF, ECO_HC, DeepSTRCF, SRDCF, ARCF, 

HiFT, UDT+, BACF, Staple, TADT, SAMF, CCOT [15] 

(continuous convolution operators), and KCF. As shown in 

Table 4, the experimental results show that the UAVs visual 

tracker designed in this paper is still reliable in long term 

tracking. The DP and AUC are 72.3% and 54.6%, respec-

tively, and the DP and AUC are increased by 15.50% and 

18.18%, respectively. 

Table 4. Quantification evaluation on UAV20L. 

Trackers DP AUC Trackers DP AUC 

SAMF 0.470 0.326 DeepSTRCF 0.588 0.443 

CCOT 0.561 0.395 MCCT 0.605 0.407 

KCF 0.311 0.196 SiamRPN 0.626 0.462 

SRDCF 0.507 0.343 DaSiamRPN 0.665 0.465 

Staple 0.455 0.331 ARCF 0.544 0.381 

SiamFC 0.613 0.399 UDT+ 0.585 0.401 

MCPF 0.586 0.370 AutoTrack 0.512 0.349 

BACF 0.584 0.415 TADT 0.609 0.459 

ECO_HC 0.522 0.387 HiFT 0.763 0.566 

DSiam 0.603 0.391 SiamDFT++ 0.723 0.546 
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3) Results on the DTB70 dataset: this study tested the 

tracker on the DTB70 dataset and compared it with 17 kinds 

of most advanced trackers, including: HiFT [17], Auto Track 

[20], UDT+ [9], ARCF [28], UDT [9], TADT [10], CCOT 

[15], SiamRPN [8], CFNet conv2 [23], MCCT [21], Deep-

STRCF [7], ECO_gpu [16], BACF [6], MCPF [22], SRDCF 

[23], KCF [2], and SAMF [14]. As shown in Table 5, the 

experimental results show that the UAVs visual tracker de-

signed in this paper is still reliable in the special design of 

camera jitter. The DP and AUC are increased by 10.54% and 

16.23%, respectively. ECO_gpu uses multifeature fusion to 

extract target information, SiamRPN uses the regression fi-

ne-tuning mechanism of bounding box, and UDT proposes 

multi-frame verification strategy to improve tracking per-

formance. However, it can be seen from the data that these 

trackers are redundant in feature extraction, resulting in low 

environmental adaptability. 

Table 5. Quantification evaluation on DTB70. 

Trackers DP AUC Trackers DP AUC 

SAMF 0.519 0.340 SiamRPN 0.721 0.499 

KCF 0.468 0.280 CCOT 0.769 0.517 

SRDCF 0.512 0.363 TADT 0.693 0.464 

MCPF 0.664 0.433 ARCF 0.694 0.472 

BACF 0.590 0.402 UDT 0.602 0.422 

ECO_gpu 0.722 0.502 UDT+ 0.658 0.462 

DeepSTRCF 0.734 0.506 AutoTrack 0.717 0.479 

MCCT 0.725 0.484 HiFT 0.802 0.594 

CFNet_conv2 0.616 0.415 SiamDFT++ 0.797 0.580 

Table 6. The analysis table of method validity is on got10k benchmark. 

Method 

UAV123 [26] UAV20L [26] DTB70 [27] 

DP AUC DP AUC DP AUC 

BT 0.734 0.532 0.746 0.498 0.719 0.499 

BT + F 0.757 0.569 0.739 0.520 0.744 0.534 

BT + F + AIFM 0.773 0.579 0.653 0.519 0.757 0.543 

BT + F + FDCM 0.780 0.582 0.662 0.523 0.771 0.558 

SiamDFT 0.786 0.593 0.677 0.548 0.783 0.560 

SiamDFT++ 0.798 0.601 0.695 0.555 0.797 0.580 

 

4) Ablation experiments: this study design ablation ex-

periments on the got10k benchmark. As shown in Table 6, this 

study use BT to represent the baseline tracker, and use F to 

represent the enhancement of the width of the backbone 

network, the introduction of the complete intersection over 

union method and deep cross-correlation operation. Before 

using shallow features, this study referred to the tracker as 

SiamDFT. It can be seen from the data that SiamDFT++ has 

good robustness in both short-term and long-term tracking 

scenarios, which proves the effectiveness of this algorithm. At 

the same time, the tracker runs with 66FPS (frames per se-

cond), which has good real time performance. 

As shown in Figure 5, this study use DJI Maciv Air2 to test 

the SiamDFT++ in a college sports ground, and the flight 

altitude is 15 meters. this study also display the heatmap and 

response map in the tracking process, and the tracker can 
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always locate at the center of the target. 

 
Figure 5. Real scene tracking on the UAV platform. 

5. Conclusions 

In this paper, aiming at the influence of object occlusion, 

camera jitter and similar objects in the process of UAVs visual 

tracking, a UAVs visual tracker (SiamDFT++) is designed to 

improve the tracking performance of a siamese network with 

regression calculation, introduce a deep cross-correlation 

operation to strengthen the accuracy of similarity calculation 

and improve the number of channels to increase the appear-

ance feature information of the target. The calculation method 

of complete intersection over union is introduced to complete 

the calculation of the target frame, the attention information 

fusion model is proposed, and the shallow features are fully 

used to improve the extraction ability of the template frame 

target. The feature deep convolution network is designed to 

adapt to the learning and detection of the appearance infor-

mation of the frame target, so as to effectively improve the 

visual tracking performance of UAVs. In the future, it is 

considered to improve the detection ability of the tracker for 

the target features of the first frame will be improved. When 

the target drifts or loses, it will be redetected without affecting 

the real-time tracking, so as to improve the robustness of the 

UAVs visual tracker. 
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