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Abstract: This paper examines the effects of radiation pressure and triaxiality of two stars (primaries) surrounded by a belt
(circumbinary disc) on the positions and stability of a third body of an infinitesimal mass in the framework of the Elliptic restricted
three body problem (ER3BP). We have obtained analytical solutions to the triangular equilibrium points and their stability and
have also investigated these solutions numerically and graphically using radiating binary system (Xi- Bootis and Kruger 60). It is
observed that their positions and stability are affected by semi-major axis, eccentricity of the orbit, triaxiality, radiation pressure
of the primaries and potential from the belt. The perturbed parameters show the destabilizing tendency by decreasing the range
of stability. The triangular points are found to bestable for 0 < p < p.where p. is the critical mass parameter. The stability
analysis for the binary system yielded a stable outcome when we consider the range of mass parametery in the region of the
Routhonian critical mass ratio (0.03852) when the effect of circumbinary disc is dominant. We found triaxiality and radition
factors inducing instability even within this range.

KeyWOI‘dS: ER3BP, Triaxiality, Radiation Pressure, Pontetial from the Belt, Stability, Binary System, Routhonian Mass Ratio,

Oblateness, Eccentricity, Semi-Major Axis, CR3BP

1. Introduction

The classical restricted three body problem assumes that
the primary bodies are spherical in shape, whereas in the
actual situation they are not. Most celestial bodies are oblate
spheroids or triaxial rigid bodies. For Example, planets (Earth,
Saturn and Jupiter) as well as stars (Archid, Luyten, Kruger-
60 and Xi-Bootis) are sufficiently oblate or triaxial rigid bodies
and they play special and significant roles both in stellar and
solar dynamics.In the elliptic restricted three body problem ,
the infinitesimal mass does not influence the motion of the
primaries which move in elliptical orbits about their common
centre of mass, but is influenced by them and lies in their
gravitational field.

The elliptical restricted three-body problem has been
studied by Nutan et al. [1], Szebehely [2] and Zimovschikov
Thkai [3] afterwards certain specific characteristics of celestial
bodies such as oblateness and triaxiality were taken into
consideration (generalization). The reason being that such

asphericity of celestial bodies causes perturbation, which is
of interest to most astrometers and scientists. These have
received the attention of [4-10]. They all studied the effect
of perturbations on the orbit of the primaries with or without
radiation pressure (s).

A similar problem studied by [11] considered the case where
the three participating bodies are oblate spheroids.In [12] the
stability of libration points when the smaller primary is a
triaxial rigid body and the bigger one an oblate spheroids
in the frame work of circular restricted three body problem
(CRBBP) was determined. Also [13] studied the case where
both primaries are oblate and radiating with gravitational
pontential from a belt. In their paper,[14] established the
equilibrium points and their stability when both primaries
are oblate triaxial and sources of radiation as well in the
elliptic restricted three body problems(ERT3B). Reference[15]
included oblateness and triaxiality in their model, and they
observed that there is a shift in the equilibrium points towards
the line joining the primaries.
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Several studies under different assumptions have been
conducted on the effect of circumbinary disc on the stability
of equilibrium points. For example,[16] examined the analytic
and numerical treatment of motion of adustgrain particle
around triangular equilibrium points when the bigger primary
is triaxial and the smaller one an oblate spheroid with a
gravitational potential from the belt. They found that triangular
points are stable for 0 < 1 < p,. and unstable for p. < p <
%, where psubscriptc is the critical mass ratio. They also
observed that the potential from the belt increases the range
of stability. In their case, the triangular points no longer form
equilateral triangles with the primaries but a scalene triangle
due to perturbations. Similar results were obtained in [17] in
terms of the region of stability, when the more massive primary
is a source of radiation and the less massive primary is oblate
with the potential from a belt.

[18] included P-R drag effect in their model when the
first primaryis a triaxial body and the smaller one an
oblate spheroid emitting radiation pressure, enclosed by a
circumbinary disc. They concluded that the potential from the
disc is a stabilizing force as it can change an unstable condition
to stable one even when the mass parameter exceeds the critical
mass value (that is, ).

In this paper, we study the effect of triaxiality and radiation
pressure of the primaries on the third body of infinestimal mass
in the framework of elliptical restricted three body problem
(ER3BP) with potential from the belt. Since the orbits of
most bodies are not spherical, analysing their motion in a

circular restricted three body problem (CR3BP) would lead to
exclusion of some parameters from the analysis, such as semi
major axis and eccentricity.

Furthermore, the CR3BP is inadequate in describing
the dynamics of a particle emitting radiation, because the
gravitational force alone cannot be considered in studying the
dynamics of a stellar system [19]. For Example, the gravity is
not the major force present when a star collides with a gas and
dust particles but the repelling forces of radiation pressures.

In the light of the above, we consider the motion of a
test particle under the influences of two luminous and triaxial
primaries moving in elliptic orbits enclosed by a circumbinary
disc (belt). In this case we will use two binary system Xi-
Bootis and Kruger 60 for numerical explanation.

This paper is organized into the following sections: section
2 describes the equationsof motions; section 3 contains the
solution to equilibrium points. In section 4 we obtain the
stability, while we present numerical application in section 5
and section 6 is discussion and conclusion.

2. Equation of Motion

We present below the equations of motion of an infinesimal
mass in the framework of ER3BP in which the primary and
secondary bodies aretriaxial and radiating with potential from
the belt. In a pulsating co-ordinate system with dimensionless
variables (¢, 7, ¢ ) following [10],the equation of motion can
be written as:
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where p is the mass parameter, n is the mean motion of the
primaries, ryand ry represent distances of the third body from
the primaries, o; and o9 denote the triaxiality of the bigger
primary, while o3 and o4 denote the triaxiality of the smaller
primary.

The lengths of the axis are denoted by a, b, c for the bigger
primary and a’, b’, ¢’ for the smaller primary, r;, (i = 1, 2)are
the distances of the infinitesimal mass from the bigger and
smaller primaries respectively, while ¢; is the radiation factor
of the bigger primary, g» the radiation factor of the smaller
primary,a is the semi-major axis of the orbits of the primaries
and e the enccentricity. M}, << 1 is the total mass of the
belt,r is the radial distance of the infinitesimal mass given by
r? =22 4+ y?, T = A+ B Aand B are the parameters which
determine the density profile of the belt [20-22].

(1—u)(§+u)q

30— p) (64 )21 — )

The parameter B controls the size of the core of the density
profile and is known as the core parameter. r. is the radial
distance of the infinitesimal body through the triangular points
in the classical R3BP.

3. Location of Equilibrium Points

The equilibrium points are the stationary solutions and are
obtained by substituting ¢ =7 =¢ =¢ =5 =¢" =0
in the equations of motion (1). Thus, they are solutions of
equations:
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When triaxiality and the potential from the belt are absent,
the first and the second of (6) can be written as:
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Using (7) and p # 0 we have
7“1=q1;7 r2=q2; (3)
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If we consider the effects of triaxiality of both primaries and
the belt, the values of 7; in (8) will change slightly by €;(;—1 2)
where ¢; << 1 and depends on triaxiality of both primaries

and the potential from the belt so that:
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Using the values of r; andrs from (9) in (3) and neglecting
the second and higher terms in €;(;— 2) and their products with
€, 0(i=1,2,3,4) and M} we obtain:
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Substituting the value of n? from (4), 7;(i = 1,2) from (3)
and (£, n) from (10) into (6) and neglecting the second and

e1=An + A + Ags } (11)
higher order terms we have:

€9 = B11 + Bia + Bi3 + By

where
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Making use of (11) in (10) we obtain:
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The Points above are the triangular points and are denoted by L, sand are known as Lagrangian triangular equilibrium points.

4. Stability of Triangular Equilibrium Points L, 5

We investigate the motion of a dust particle near the equilibrium point (£y, 19)and consider small displacement («, 3) from
this position so that & = £y + « and = 19 + 8. When these values are substituted in equation (1) then the variational equation
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are obtained thus:

o —28 =a0d + 802, B +2a =a0? +BQ°,

We consider only the linear terms in « and S . The second partial derivatives of the force function are denoted using subscripts.
The superscripts O shows that the partial derivatives are taken at the equilibrium point (&g, 7)) Following the same linear stability

analysis used in [9], the characteristic equation of the equilibrium point is
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Fy = 16 f + 2 2 7t 2 T T 4
16 (aqp)® 16 (aqp)® 32(ag1)® 32(aq1)® 16 (aqp)® 16 (aqr)® 8(aq1)3
2 2
by = 15(1—p) 15(1—p)(age)®  33u(ag)®  3p
16 (aq1)2 4 (oqu)2 8 (an)% 8 (aqg)%
4 1 4
_ 3750 —p)(age)® _ 123(age)® | 9u(age)® | T5(1—p) (aqr)? 15
32 (aq1)” 16 (aql)g 16 (aql)% 16 (aql)% 8 (aqg)%
2 2 2 1 2
154 3 (age)? 3 (ags)? 3 (ags)? 3 (ags)? 15 (aqr)®
- 2 7t . P 7t Tt 2
8(agz)® (aq1)®  2u(aq)®  2p(aq)®  2p(aqi)®  2p(aqn)® 4(age)®
9 9u  3(age)®  33u(ag)® 33 63 33u(aq)
Fy = 127" 64 + 2 7 T z 2 2
8 (ag1)3 8 (ag1)3 16 (aq1)® 16 (aq1)? 64 (age)3
654/ 5250 (ag1)® 225 15p 150 (aq)® | 3p(ags) ®  15u(aga)”?
2 it PO 2 2 .
32(aqy)®  32(agz)®  64(ag)? 16 (age) 4 (ags) 4(aq))? 8(aq1)
3% (ag1)® 31 (aq1)® 31 (ag1)® 150 15 15 15 (aq1)®
+ i 4 2 4( ) - 2 + 2 2 + 2
2(1 —p)(ag2)®  2(1—p)(agz2)®  2(1—p)(age)? @) 4(ag2)®  8(aq1)® (age)®  8(agz)?
1 1 2 4 2
B -pfae)® 150 —p)(agy)  15(1—p)(ady)® | 15(ag)®  T5p(aq)® | T5p(aq)®
16 (aql)% 8 (aql)% 16 (aqg)% 16 16 (aqz)% 16 (aqg)%
2 4 1 2
Tp(aq)®  Tou(aqn)®  15p(age)®  15p | 1bu(aqn)®  Top
16(ago) 32 (aq2)§ 16 8 (aqg)% 8 64(aqa)
2 2 2
9 9u  3(aq2)®  33u(age)® 21 S51p 33 (aqq)? 6304
Fi=g-b- ( 2)g+ ( 22 B 4 4 ( 1)27 .
8(aq1)3 8 (ag1)3 16 (aq1)® 16 (aq1)? 64 (ag2)3 32 (age)3
2 2 _2 2 2
5254 (aqi)® 2254 15y 15u (aq1)®  3p®(ag2) ® | 15u(age) 3p° (aq1)®
- 1 1 2 2 i B 3
32(agy)®  64(ags)® 16 (age) 4 (aga) 4(aqy)? 8(aq1) 2(1 — p) (aga)®
32 (aq1)* 32 ()’ 15 15 15 15 (ag)® | 15(1— pr) (ag2)®
4 2 2 2 2 2
21— p)(age)® 20— p)(age)® MU 4(a2)’  g(4g1)? (agy)’  8laa2)’ 16 (ag1)
1 2 4 4 2
L 150 - p)(ag) | 150 — p)(age)®  15(aga)®  375p(aqu)® | Top (aq)®  T5u(aq)®  75u(aqy)®
8 (aql)% 16 (aql)% 16 32 (agz)? 32 (agz)? 16 (aqg)% 32 (aqg)%
2 4 2 1 2
5u(ag)3  T5u(aqr)®  15u(age)®  15u (age)3 15u 15u (agq)3 501
32(aqz) 32 (ags)? 32 16 8 (ags)? 8 64(aqo)
7My(2r, — 1 9M,
Fy = b(2r 3) + - 5
4(r2+ T%)2  4(r2+4 7?)2
2 2
3(1—p) [ 30—-p) 301 —p)(ag)® 3p 3ulag)®  3p  (3(1—p) 3p 2
Go = 7 T 5 - Pl 3 3 o + 3 3 | €
2 (aqr)? 4 (aqq)3 2(aq1)3 2 (agqa)?® 2(aq)® 2 (aqz)®
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o 8lu 87 123y  81(ag)® 27(ag2)’ | 15(1—p)  3pu(age)’
1= 2 2 1c 2 2 PO 1
16 (aq)®  16(aq)® 16 16 16(aq)® 16(aq)®  4(aq)® 8 (aq1)®
2 4 2 1 4
_A45(1—p)(age)®  15(1—p) — 1) (GQ2)3 Ou _ 33u(aq)® _ 183(age)® | 159 (age)®
8 (aq1)2 8 (aq) 16 (afh) 4 (aqg)% 8 (aqg)% 16 (aql)g 16 (aql)%
75 (1~ p) (agy)’ 15 3(ag)’  3(0g)® | 3(ag)’ 15 15 (ag))*
2 2 2 i 2 4 2 2 2
16 (aq1) 8(aq)® (aga)®  2p(aqi)®  2p(aq)®  2u(aq)®  4(age)® (aq)® 4 (age)?
27 33u 87 | 123u  8l(ag2)’  27(age)’ 15(1—p)  9(ag)® 3u(ag)®
Gy = 7+ 2 TG 16 7+ 2 PO 1 4
16 (aqq )3 16 (aqq )3 16 (aq1)® 16 (agy)? 4 (aqy)® 8 (agq1)3 8 (ag1)3
2 1 2 1 4
LA (agp)® 150 —p) | 1501 — p) (aga)® 9 _ 33u(aqn)® | 183(aga)® _ 159u(agy)®
8 (aq1)2 8 (aq1) 16 (aq1)2 4 (G,QQ)g 8 (aqg)g 16 (aql)% 16 (aql)g
75 (1~ p) (ago)’ 15 3(ag)® | 3(ag)’  3(ag)’ 15 15 (aq))*
2 2 2 + 4 + 2 4 2 2 + 2
16 (aq1) 8(aq)® (aga)®  2u(aqn)®  2p(aq)®  2u(aq)®  4(ag)® (aq)®  4(age)?
2 2 2
-9 Iu 9 129u  3(ag2)®  33u(age)?® 147 3u(aqy)3
Gro 0 O 0 10 3w Wl WTu_ 3uea)?
16 (aqq)® 16 (aqq)® 8 (ag1)3 8 (ag1)3 32 (age)3 32 (age)3
2 2 4 —2 —2
1054 165p (aqi)*® L 45p (aq1)®  15p L 1o (aq1)® L (aga)® n 15p(age)®  15pu
32(ag2)® 32 (aqz)é 8(ags)”  8(ag)®  16(ags)® 4 (agy)? 4(aqr)  4(aq)
L3 (aq)’ 31 (ag1)® 31 (ag1)® 15 15 154
4 4 2 2 2 2 2 2
4(1-p)(ag2)®  4(1—p)(ag2)® 4(1—p)(ag2)® 4(age)® 8(agz)® (aq1)®  8(age)® (aq1)®
2 4 1 2 2
)t 150 p et 1500 ) | 1500 e 15w 15?105
8 (aqg)% 16 (aql)% 8 (aql)% 16 (aql)% 16 32 32 (aqg)%
4 2 2 4 2 1
. Thu Thu (aq1)2 1351 (agq)3 n 75 (aqr )3 75,u (aq1)®  T5pu(aqi)® 15u(aqy)®  45u (age)®
4 1 2
32(aq2)  16(ag2)”  16(agn)® 32 (age)? 32 (ag2) 2 (aga)® 4 16
9 Ou 9, 201p 3(ag)’ 33u(ag)’  Slp Bu(ag)® 105
Gy = z ) 1 + 32 + z 2 7t 7o 1
16 (aq1)® 16 (aq)® 8(aq1)3 8(aq1)3 32 (aga)® 32(ag2)3  32(age)3
2 2 4 -2 -2 2
| 165p (aq1)®  45p(aqi)? 15 15p(agi)®  9u(age)®  15u(age)® 15 3y (aqi)?
32 (ags) 8(agx)”  8(ags)®  16(aq2)’ 4 (aqy)? d(aq)  4(aq) 41— p) (aga)
3p° (aqy)® 347 (aqy) 15 15 15y L1 (ag1)®
4 2 2 2 2 2 2 2
4(1—p)(ag2)®  4(1—p)(ag2)® 4(ag2)®  8(age)® (aq)®  8(age)? (aqi)®  8(agz)?
1 1 2 2
C15(1—p)(age)®  15(1—p)(agz) 15(1—p)(aq)® | 15(age)® | 15u(age)® 4 195m 75
16 (aql)% 8 (aql)% 16 (aql)% 16 32 32 (aqg)% 32(aq2)
4 2 2 4 2 1
50 (aq1)2 135u (aq1)®  75u(aqr)®  T5u(agr)®  T5u(aqy)3 _ 15p (aq1)®  45u(age)®
" 2 T EIED’ 3 4 16
16 (aqy) 16 (ago)? 16 (ags)? (agz) 32 (aga)?
11Mb(271c — ].) 3Mb(% — /JJ)
Gs = —

6(r2+ T2)2  2(r2+ T2)3

Substituting the values of (14) into the characteristic equation (13) and restricting ourselves only to the linear term in M,
a,e°,01,02,03,04,0,q1, and go where a = 1-«, g1 =1- f7 and g2 = 1 - B3 and neglecting the second and higher order terms of

My.€2,51,582,0, 01,092, 03, and o4 and their products we obtain:

4(02)" +4(4 - 361) A + 27p(1 — )

+4¢2 =0

15)
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Where;
(1 .2\"3 175(1—p) ~  167(1—p) 1250 117 My(2re+3)  3Myr
¢1 = (1 e ) 2 |:]. + S g1 S o2 + TO'B 3 o4| + (7'§+ TQ)% (r2+ ;2)%
(16)
o =3 (1 — p) o+ 20 (By + By) + B4U= 2 4 Hy + Hy + Hy + Hy + Hy
Where
333 —p)  2547p(1 — ) 15750 3087u° N 207(1 — p)? ,
32 16 32 32 !
675 — ) 2475u(1 —p)  1377p . 26914%  171(1 — p)® .
32 16 32 32 2
—297(1 — 13221M(1 — ) 693u2  765u  171(1— p)?
( 256 T TTa T 3
225 1 —p)  1034p(1—p)  621p%  837u  135(1—p)° .
256 64 64 32 4
33My(2r. — 1) 27M,
Hy = _
2r2 +T2)F  4(r2+T2)3
equation (15) is a quadratic equation in A% which yield
1
4—3¢) % [(4—361)2 —27p (1 — p) — 4652
A2:_( ¢1) £ [(4 —3¢1) (1 — ) — 4go] an

2

For the motion to be stable, we require A to be pure imaginary i.e the motion of the particle must be bounded and periodic,
therefore we choose i, ¢1, ¢ such that A%< 0, we have 3¢1- 4 < 0 and the discriminant

A= (4-3¢1)% —27p (1 — p) — 4¢9>0 (18)

which yields

|—

9 175 (1 — 167(1 — 125 17 \?]*  My(2r.+3 3M 2
0ce< 1o 2 (14 0= o 16TA =g o 125p o 11T 4 More+3) e (19)
16 3 8 3 8 (r24 T2)2  (r2+ T2)2

When My =01 = 09 = 03 =04 = 0 (19) becomes

O<e < g (20)

If (18) is not satisfied, the roots will be either real or complex conjugate. In case they are complex roots, the positive real part
indicates instability of the equilibrium points being investigated.
The characteristic root obtained from (15) is thus:

3 525 (1 — 501 (1 — 375 351 3My (2re4 3 9IM,
)\12_( _ 22 _ ( M)Ul ( N)U2_ M03+ M04— b(7“+3)+ b i
2 8 8 8 8 (r2 +1T2)2 (r2 +1T2)2

) +K Q@

where

Nl

K = [K; — Ko + K3

333 45 9081 6777 66 My (2r._1 27TM
K, = (KO*f01**02+ 108" g 4t b (20 )JF b§)2
8 3 6 6 (r2+T2) (r2 +172)>
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Ko = (27 + 12a+ 61 + 682 + 45¢7)

3525 3765 20493 17805 66 M, (2r.-1) 108 M,
K2:<K0— o1 o9 o3 — o4+ = + 5)/1,4—
8 8 64 64 (r2 +1T2)2 (r2 +1T2)2
3921 3873 45 45 2My (2743 6 M,r >
K3:1_3€2— oy — — b(T+)_ bT e

g 7178 167 " 167 (r2+T2)%2 (12 4+72)3
In order to examine the effect of binary system parameters on the stability of triangular equilibrium points we have used
(21) to compute the characteristic root for the binary system( xi-Bootis) in Table 7 and Table 8,with the mass ratio in the range
0.0005< p < 0.11942. In Table 7,the roots are pure imaginary numbers for values of p ,0.0005 < p < 0.03852 indicating
stability of the system dynamics due the effect of the mass ratio and the disc.However,in Table 8 complex roots are obtain due to
the combine effect of radition pressure,triaxiality and the disc which has caused instability to the triangular equilibrium point.
From (18) we have:

333 45 9081 6777
A = (27 + 12a + 681 + 682 + 45¢”) p® + (—al - —oa+ 4) p

8 8 64 > 64 °
66My (2r. — 1 27M, 3525 3765 20493 17805
+ o (2r 3)+ b | u® — (27 + 12a 4 681 + 682 + 45¢* — o1+ o2 + o3 — o1 )
(re2 +T2)2 (re2 +T2)2 8 8 64 64
66My (2re — 1 1080, , 3921 3873 45 45
+ + +(1—-3e” — o) 02 — —03+ ————0
247128 (rziri ) 8 71T T8 T 167" T 1664805
L 2My (e +3) 6Myr.> (22)
(re2 JrTz)% (re2 +T2)%

Equations (18),(20) and (22) gives the necessary condition for the stability of triangular equilibrium points.The solution of the
quadratic equation A = 0 when the disriminant vanishes fory gives the critical value p. of the mass parameter given by:

I N C A B — 2 5_1462+<—643_6013>U+<635+ 5909)0
He =5 27 | 27v69 2769 - 2769 © 9v69 72 72v69) ¢\ 72 2169/
1317 18667 1 919 5945 3, (76 — 8ro) (r2 . T?) 83+ 12¢2
32\ 37279 18v69/ ° 32\ 9319677279 6v69/) - \2 27, /69 6,/69
% Lﬁ (23)
(r? +12)

We have used equation (23) to study the effects of eccentricity, triaxiality, and radiation pressure, and the potential from the
belt on the critical mass value . by using the values of e, a, 81, B2 of the binary system and allocating arbitrary values to the
triaxiality factors 0;(i=1,2,3,4). The critical mass parameters p. indicates the effects of the various parameters on the size of
region of stability. We rewrite Eq.(21) as
_ -BxvVA

: (24)

2
A2
where

B2 BOL(L—p) 3T BTou 3M(2rei3) 9M,r,2

>0
8 o 8 72 g oyt (r2 +T2)2 (12 +7T2)3

le—ge2

The roots are the functions of the values of the mass parameter yu,the radiation , triaxiality and the belt.Hence the nature of
these roots depends upon the nature of the discriminant A and B.since B> 0, A > 0 in the interval 0 < p < p.,thefore the
roots of (24) \;(i = 1,2, 3, 4) are distinct pure imaginary numbers. Consequently the triangular points are stable in this region.

A1234 = FiA, (n=1,2) where A, =\/g (—Bix/ﬁ) ,n=1.2and If i < p < 3 ,A < 0 the real parts of two of the roots

of (24) are positive .Hence the triangular points is unstable. When p = p., A = 0 the roots are double roots,which induces
instability at the points.Therefore,the triangular points are stable for 0 < ;1 < p,. and unstable for p. < p < % , b 1s the critical
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mass parameter.

5. Numerical Application

We present in Table 1 the numerical data of the binary system follow by calculation of radiation pressure factors.

Table 1. Numerical Data for the Binary System.

Binary system Masses (Mo) Eccent. (e) Semi-major axis (a)  Lumino.. Spec. Types

My Mo Ly Lo
Xi Bootis 0.9 0.66 0.5117 4.9044 0.49 0.061 G8/k4
Kruger 60 0.271 0.176 0.4100 2.3830 0.01 0.0034 M3/M4

Data source: NASA ADS

We now calculate the radiation pressure factor using the Setefan Baltzman’s law [10] as g=1-(A xL/rpM), M and L are the
mass and luminosity of a star respectively;r and p are the radius and density of a moving body respectively, ¢ is the radiation
pressure efficiency factor of a star, A:(ﬁ) is a constant.In the C.G.S system A=2.9838 107> , We take » = 2X10~2 and
p = 1.4gem =3 [10] for some dust particle. The radiation factor obtained areq; = 0.9988 and g» = 0.9998. We substituted values
of the parameters of the binary system into (12) and obtained triangular equilibrium points for the system, which are presented

in Table 2, where in each case is u = #2"72

Table 2. Location of Triangular Equilibrium Points for the binary systems when M, = 0.01,7. = 0.869,7T = 0.01.

Binary system o q1 q2 a E o1 o2 o3 o4 & +n

X1-Bootis 0.4231 0.9988 0.9998 0.7304 0.5117 0 0 0 0 0.0767004 0.590252
0.004 0.02 0.003 0.011 0.0766489 0.577118
0.006 0.04 0.005 0.02 0.07662613 0.576888
0.008 0.006 0.01 0.03 0.0759019 0.576674

Kruger 60 0.3937 0.9992 0.9996 0.5894 0.4100 0 0 0 0 0.31958 0.565314
0.094 0.002 0.003 0.01 0.296101 0.544152
0.06 0.004 0.005 0.02 0.288585 0.537201
0.08 0.006 0.01 0.03 0.277940 0.527200

Table 3. Effect of radiation Pressure on the Location of Triangular equilibrium points of xi-bootis M, = 0.01,r. = 0.869,T = 0.01.

o o1 o2 o3 o4 e a q1 g2 € £n

0.4231 0.004 0.002 0.08 0.02 0.7304 0.5117 0.99 0.95 0.0872081 0.4829534
0.85 0.80 0.0762394 0.4385567
0.80 0.75 0.0714364 0.4216989
0.75 0.70 0.0663268 0.403929
0.70 0.65 0.0608527 0.3851350
0.65 0.60 0.0549389 0.3651739

Table 4. Effect of Radiation Pressure on critical mass value pi. of xi booti s M = 0.01, r. = 0.869, T = 0.01.

A e o1 o2 o3 o4 q1 q2 He
0.7304 0.5117 0.001 0.02 0.0011 0.01 0.9968 0.9996 0.3160566188
0.9978 0.9997 0.3160468096

0.9988 0.9998 0.316037003
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Table 5. Effect of triaxiality on Stability range of critical mass value u. of Kruger 60 M, = 0.01, r. = 0.869, T' = 0.01.

A e o1 o2 o3 04 a1 q2 He

0.96 0.03 0.001 0.004 0.002 0.01 0.99 0.95 0.0363732
0.002 0.0041 0.0022 0.011 0.0196754
0.00201 0.004101 0.00221 0.0111 0.0195519
0.00202 0.004102 0.00222 0.0112 0.0194285
0.00203 0.004103 0.00223 0.0113 0.0193050

Table 6. The effect of mass ratio and the disc on the characteristic roots of the binary system (xi-bootis) when 01=0.001, 02=0.01, 03=0.002
04=0.02, ¢1=0.9988 and q2=0.9998 r. = 0.968 T=0.1.

Mass ratio p

Ai(My = 0)

i (M, = 0.05)

i (M, = 0.1)

0.0005
0.005
0.017
0.027
0.034
0.0384
0.03851
0.03852
0.03853
0.07
0.09

0.11942

+1.49626+0.311611
+ 1.48601£0.359146
+ 1.45714£0.466375
=+ 1.43099+0.544069
+ 1.4112440.59165

+ 1.39808+£0.626489
+ 1.39774+£0.627267
=+ 1.397714+0.627338
=+ 1.39768+0.627408
+ 1.27242+0.858737
+1.0920240.10634i

+1.1244140.280589i

+0.503409i+1.56672i
+0.539042i+1.55439i
+0.628694i+1.51917i
40.700349i+1.48651
+0.700332i+1.4612i
+0.782166i+1.443961
+0.782969i+1.44351i
+0.783042i+1.443471
+ 0.783115i41.44343i
+ 1.0962i£1.21893i
+0.229649+41.18047i
+0.35204641.20902i

+1.65723i £2.237231i
+1.67029i42.22728i
+1.70698i42.19847i
+1.74041i£2.171431
+1.76607i42.150121i
+1.78355i42.13534i
+1.784i+2.13495i
+1.78405i+2.13492i1
+1.78409i+2.13488i
+0.09965264-1.96866i
+0.18503611.97408i
+0.26071241.9815i

Table 7. The characteristic root under the combine effect of triaxiality,radiation and the pontetial from the belt for the binary system xi-bootis

when o1 = 0.04, 02 = 0.03,03 = 0.01, 04 =0.02, g1 = 0.9988 and , g2 = 0.9998, T=0.1, r. =0.869.

Mass ratio Ai(Mp = 0) Ai(Mp = 0.05) Ai(Mp, =0.1)
0.0005 +0.697478+0.790627i +0.322719+£1.662751 +0.227865+2.28789i
0.005 +0.708064+0.797785i +0.332991+£1.66372i1 +0.23725+2.288081
0.017 +0.734196+0.815346i +0.358454+1.66619i +0.260374+2.28855i
0.027 +0.753958540.828516i +0.377851£1.66814i +0.277809+2.2889i
0.034 +0.766923+0.837052i +0.390594+1.669431 +0.289208+2.28912i
0.0384 +0.774711+£0.842158i +0.398287+1.67022i1 +0.296074+2.28924i
0.03851 +0.774903+0.842283i +0.398477+1.67024i +0.296243+2.28925i
0.03852 +0.77492+0.8422956i +0.398494+1.67024i +0.296259+2.28925i1
0.03853 +0.774937+0.842206i +0.398511+£1.670251 +0.29627442.28925i1
0.07 +0.82418+0.8738871 +0.447587+£1.675321 +0.339894+2.28995i1
0.09 +0.850795+0.890313i +0.47442+1.678051 +0.363696+2.2902i1
0.11942 +0.884952+0.910493i +0.509157+£1.68139i +0.39455+2.29029i
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Figure 1. The effect of triaxiality on the L4 5 of xi booti.

Figure 1. Showing effect of trixiality on Ly 5 of xi-bootis
when o; = (i = 1,4) = 0,q1 = 0.9988,¢q2 = 0.9998.a =
0.7304,e = 0.5117 and wheno; = 0.004, 09 = 0.002,03 =
0.003,04 = 0.003, M, =0.1,T = 0.1, 7. = 0.869

I I I I I
-0.4 -0.2 0 0.2 0.4 0.6 0.8

=

Figure 2. Effect of triaxiality on triangular point for kruger.60.

Figure 2. Showing the effect oftriaxiality on triangular
equilibrium points for Kruger 60 o; = (i = 1,4) = 0,q1 =
0.9992,q0 = 0.9996.a = 0.5894,e = 0.4100 and when
o1 = 0.004,00 = 0.002,03 = 0.003,04 = 0.01, M}, =
0.01,7 = 0.01,7, = 0.869
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Figure 3. Effect of semi major axis on Ly 5 of xi-booti.

Figure 3. Showing Effect of semi major axis on L4 5 of
xi-bootis when ¢; = 0.9988,¢92 = 0.9998u = 0.4231,e =
0.5117 and when o1 = 0.04,02 = 0.02,03 = 0.003,04 =
0.005,M, = 0.01, T = 0.01,». = 0869 for a =
0.37,0.68,0.97
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Figure 4. Effect of eccentricity on Ly 5 of kruger 60.

Figure 4. showing effect of eccentricity on Ly 5 of kruger
60 when ¢1 = 0.9992,q2 = 09998, = 0.3937,a =
0.5894,00 = 0.04,00 = 0.02,03 = 0.003,04 =
0.005, My = 0.01,T = 0.01, . = 0.869 fore = 0.3,0.6,0.9

6. Discussion and Conclusion

The motion of an infinitesimal mass around L4 5 of the
triangular equilibrium points have been investigated in the
framework of ER3BP taking both the primaries as radiating
and triaxial with gravitational potential from the belt .We have
used (12) to establish triangular equilibrium points for the
binary system (xi-bootis and kruger 60),these are presented in
Table 2. It can be seen there that the positions of equilibrum
points shift toward the £ axis as triaxiality effect increases. The
radiation pressures used in the Table 3 were taken from [19].
It is observed in Table 3 that decreasing the radiation pressure
from 0.99 and 0.95 to 0.65 and 0.60 shift the triangular
equilibrium point towards the £-axis[19]. Similar effects
occurs in Table 4 where increases in radiation pressure lead to
a decrease of the critical mass value u. and consequently the
stability region. This destabilizing tendency is also exhibited
by the triaxial nature of the primaries as shown in Table 5
where the effect of triaxiality reduces the range of the critical
mass ratio.

We compute the characteristic roots of xi- Bootis using (21)
and present the result in Table 6 and 7 for some arbitrary values
of mass rato,triaxiality,radiation pressure and the disc.We
consider the range 0< p < 0.11942 for the mass ratio this is
to enable us observe the behaviour of the system parameters
when 0< p < 0.03852,the stability range of restricted
three body problem.We found that in the absence of the disc
M, = 0 the roots are real numbers except few that are
complex roots but in the presence of the disc M; = 0.05 and
M, = 0.1 the roots becomes pure imaginary numbers.This
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confirms the stability effect of the circumbinary disc.However
using the same range of mass ratio the combine effects of
triaxiality,radiation pressure and disc yielded complex roots
despite the presence of the disc leading to instability of the
triangular equilibrium points under investigation.

A graphical representation of the effect of triaxiality on L4 5
of xi-bootis and kruger 60 is shown in Figurel and Figure 2
using MATLAB 2016.The coordinates of L4 5 shift towards
the ¢ axis, when triaxiality was introduced from its previous
position when triaxiality was absent showing the destabilizing
effect of triaxiality on the positions of Ly 5.

We show the effect of semi-major axis and eccentricity on
the location of triangular equilibrium points of xi-bootis and
kruger 60 respectively in Figure 3 and Figure 4. It can be
seen clearly that their positions are shifting away from the &
axis as their effect increases. This pertubing effect was also
observed by [15] in their paper. In [18] the triangular point was
unstable when the value of other parameters were increased
but becomes stable on introducing the pontetial from the belt
confirming its stabilizing potential.

The coordinates of our triangular equilibrium points
coincides with triangular equilibrium points of [10] when both
primaries are oblate spheroids i.e 01 = 02 and 03 = 04 and
My = 0. It also agrees with triangular equilibrium points
of 8]if g = 1—pi, i=1,2) a = 1,e = 0,M;, = 0. If
weput ¢; = 1 —pi (i=1,2), a = 1l,e = 0 and when
01 = o9 and 03 = o4 we get the same results as triangular
equilibrium points of [13]. when both primaries are oblate
spheroids and radiating with gravitational pontetial from the
belt with circular orbits.

Equation (23) gives the value for the critical mass ratio
e and is a function of the combined effects of radiation
forces,triaxiality and gravitational potential from the belt. The
value of critical mass ratio p. determines the range of the
stability of the system. When both primaries are oblate our
critical mass ratio p. tallies with critical mass ratio p, of [10].
When 01 = 09 and 03 = o4 and M, = 0. Similarly, if we
putfy = B2 = 0,01 = 09 and 03 = 04, M}, = 0 in equation
(23) we get the same results as critical mass . of [23] up to
zonal harmonics Jowhen both primaries are oblate with elliptic
orbit.
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